American Journal on Intellectual and Developmental Disabilities Combined transcranial direct current stimulation with sensory-based treatments in autism: Preliminary report

Manu	iscript E	Draft
------	-----------	-------

Manuscript Number:	AJIDD-D-24-00004R1
Article Type:	Research Report
Keywords:	autism spectrum condition (ASC); combined intervention; transcranial direct current stimulation (tDCS); sensory-based treatments; the prefrontal cortex
Corresponding Author:	Yang-Teng Fan, Ph.D. Yuan Ze University Taoyuan City, TAIWAN
First Author:	Shih-Han Chou
Order of Authors:	Shih-Han Chou
	Yawei Cheng, Ph.D. M.D.
	Sung-Hui Tseng, Ph.D. M.D.
	Róger Marcelo Martínez, Ph.D.
	Chenyi Chen, Ph.D.
	Yang-Teng Fan, Ph.D.
Manuscript Region of Origin:	TAIWAN
Abstract:	This study investigated the effects of SBT combined with active transcranial direct current stimulation (tDCS) of the left prefrontal cortex (SBT+AtDCS), and SBT combined with sham tDCS (SBT+StDCS) in autism spectrum condition (ASC). Eleven ASC children were randomly assigned to receive either SBT+AtDCS or SBT+StDCS for ten sessions over two weeks. All children exhibited significant improvement in their ability to regulate and respond to sensory stimuli after treatment. The SBT+AtDCS group showed significant reductions in autism severity and behavioral difficulties compared to SBT+StDCS group. This preliminary report is the first to suggest that SBT combined with active tDCS may alleviate symptoms associated with ASC. Future research with a larger sample, neural measures, and a longitudinal design is required for validation.

1 Combined transcranial direct current stimulation with sensory-based treatments in

2 autism: Preliminary report

3	Abstract: This study investigated the effects of SBT combined with active transcranial direct
4	current stimulation (tDCS) of the left prefrontal cortex (SBT+AtDCS), and SBT combined with
5	sham tDCS (SBT+StDCS) in autism spectrum condition (ASC). Eleven ASC children were
6	randomly assigned to receive either SBT+AtDCS or SBT+StDCS for ten sessions over two
7	weeks. All children exhibited significant improvement in their ability to regulate and respond
8	to sensory stimuli after treatment. The SBT+AtDCS group showed significant reductions in
9	autism severity and behavioral difficulties compared to SBT+StDCS group. This preliminary
10	report is the first to suggest that SBT combined with active tDCS may alleviate symptoms
11	associated with ASC. Future research with a larger sample, neural measures, and a
12	longitudinal design is required for validation.
13	Keywords: Autism spectrum condition (ASC); combined intervention; transcranial direct
14	current stimulation (tDCS); sensory-based treatments; the prefrontal cortex

15

±

1. Introduction

2	Autism spectrum condition (ASC) is a heterogeneous disorder characterized by lifelong
3	social communication difficulties, the presence of restricted, repetitive patterns of
4	behaviors and interests, and atypical responsiveness to sensory stimuli (American
5	Psychiatric Association, 2013). While these core features define the condition, ASC
6	manifests in a wide range of clinical phenotypes, leading to diverse treatment needs.
7	Therefore, developing therapeutic approaches that effectively address this heterogeneity
8	should be prioritized in clinical research and practice.
9	Recent advances in neuroscience suggest that the symptoms of ASC may be linked to an
10	imbalance in excitation and inhibition (E-I) within critical brain regions involved in social
11	cognition, sensory processing, and cognitive control (Robertson & Baron-Cohen, 2017;
12	Uzunova, Pallanti, & Hollander, 2016). Consequently, there is growing interest in advanced
13	therapeutic approaches targeting these specific brain regions (Sousa, Martins, Castelo-
14	Branco, & Goncalves, 2022; Uzunova et al., 2016). Transcranial direct current stimulation
15	(tDCS), a non-invasive neuromodulatory technique, modulates cortical excitability and
16	neuronal activity via a low-intensity direct current (Lefaucheur et al., 2017; Nitsche & Paulus,
17	2000; Priori et al., 1998). The effects of local stimulation can influence distant brain regions
18	through network-level changes, ultimately leading to the reorganization of dysfunctional
19	neural circuits (Palm et al., 2016). The prefrontal cortex (PFC) has long been implicated in

1	top-down control of behavior (Miller & Cohen, 2001) and altered frontal functioning is
2	thought to be a potential mechanism underlying the pathophysiology of ASC (Just, Keller,
3	Malave, Kana, & Varma, 2012; Osorio & Brunoni, 2019). Accordingly, targeting the PFC,
4	particularly in the left hemisphere, might be critical in alleviating ASC symptoms
5	(Finisguerra, Borgatti, & Urgesi, 2019). Previous studies have found that anodal stimulation
6	over the left PFC reduces ASC symptom severity (Gomez et al., 2017), improves verbal
7	fluency (Rotharmel et al., 2019; Schneider & Hopp, 2011), enhances sensory awareness, and
8	alleviates social and behavioral difficulties (Amatachaya et al., 2014; Amatachaya et al.,
9	2015; Gomez et al., 2017; Hadoush, Nazzal, Almasri, Khalil, & Alafeef, 2020). A recent meta-
10	analysis further demonstrated that tDCS can significantly improve socializing behaviors,
11	health status, and behavioral difficulties in individuals with ASC (Garcia-Gonzalez et al.,
12	2021). However, while tDCS shows promise, it is increasingly recognized not as a stand-alone
13	treatment but as a complementary approach that may enhance the efficacy of other
14	therapeutic interventions. For example, in the treatment of depression, tDCS has been used
15	in conjunction with cognitive-behavioral therapy to facilitate neuroplasticity and support the
16	reorganization of neural circuits involved in mood regulation (Aust et al., 2022). This
17	suggests that tDCS may enhance the efficacy of other treatments by creating a neural
18	environment conducive to therapeutic change.

1	Sensory-based treatments (SBT) are clinical interventions aimed at improving sensory
2	and behavioral responsiveness in children with neurodevelopmental and behavioral
3	disorders through sensory integration strategies (Ayres, 1972). Traditionally, occupational
4	therapists create individually tailored play-based activities that incorporate specialized
5	therapeutic modalities to provide varying levels of sensory experience and challenge (Case-
6	Smith, Weaver, & Fristad, 2015; May-Benson & Koomar, 2010; Schoen et al., 2019). Although
7	SBT is widely used in clinical practice and has been shown to be helpful for individuals with
8	ASC (Case-Smith et al., 2015; Koomar & Bundy, 2002; Parham et al., 2007), much of the
9	available evidence comes from case reports and series (Camarata, Miller, & Wallace, 2020).
10	Few randomized controlled trials (RCTs) have demonstrated that SBT can reduce ASC
11	symptom severity, improve sensory functioning, and alleviate social difficulties and self-care
12	challenges (Kashefimehr, Kayihan, & Huri, 2018; Pfeiffer, Koenig, Kinnealey, Sheppard, &
13	Henderson, 2011; Schaaf et al., 2014). Furthermore, a comprehensive study indicated that
14	SBT enhances individualized goals related to functioning, autistic behaviors, sensory
15	processing, and motor skills (Schaaf, Dumont, Arbesman, & May-Benson, 2018). Recent
16	research has highlighted the potential of sensory-based interventions to positively influence
17	early brain development. For instance, sensory-based interventions have been linked to
18	improvements in brain growth and early developmental outcomes in preterm infants,
19	indicating potential benefits for sensory processing and neural connectivity (Beltrán et al.,

1	2022). Translational studies	have also demonstrated that mu	ultisensory-based approaches
---	------------------------------	--------------------------------	------------------------------

- 2 can enhance neuroplasticity and contribute to the functional organization of neural
- 3 networks in early intervention contexts (Purpura et al., 2017). Moreover, an RCT has been
- 4 conducted to examine the effects of multisensory interventions on neural processing,
- 5 language, and motor outcomes in preterm infants (Neel et al., 2019). These findings suggest
- 6 that SBT may promote brain development and serve as a foundation for augmentative
- 7 interventions that further enhance therapeutic outcomes.
- 8 Given the heterogeneous nature of ASC, a multidisciplinary or combined treatment
- 9 approach may be necessary to address its diverse symptomatology (Politte, Howe, Nowinski,
- 10 Palumbo, & McDougle, 2015; Delli, Polychronopoulou, Kolaitis, & Antoniou, 2018). Emerging
- 11 research suggests that individuals with ASC may over-attribute salience to irrelevant sensory
- 12 information while lacking the ability to down-regulate brain responses to such stimuli
- 13 (Green, Hernandez, Bookheimer, & Dapretto, 2016; Green, Hernandez, Bowman,
- 14 Bookheimer, & Dapretto, 2018). Therefore, normalizing sensory experiences and enhancing
- 15 down-regulation processing may synergistically affect ASC symptoms. In this study, we
- 16 developed a hybrid intervention combining two different yet complementary treatments:
- 17 SBT and tDCS. We conducted a randomized, sham-controlled study in children with ASC to
- 18 investigate the potential effects of these hybrid treatments. These treatments consisted of
- 19 SBT combined with active tDCS over the left PFC (SBT+AtDCS) and SBT combined with sham

1	tDCS over the left PFC (SBT+StDCS). We hypothesized that children with ASC receiving
2	SBT+AtDCS would show greater improvements in autism severity, sensory functioning, and
3	behavioral difficulties from pre-treatment to post-treatment.
4	2. Methods
5	2.1 Participants
6	We recruited 11 children with ASC, aged between 5 and 7 years, from a medical center
7	in Taipei. One additional participant was excluded from the study because her parents
8	missed several items on the questionnaires, resulting in incomplete data across all outcome
9	measures. Eligible participants were required to be diagnosed with ASC by certified child
10	psychiatrists according to the DSM-5 (American Psychiatric Association, 2013) and have a
11	DSM-5 ASC severity level ranging from mild (level 1) to moderate (level 2) before entering
12	the study. Participants were not on any medication for three months prior to the study and
13	were required to refrain from taking any medication or participating in any other treatment
14	experiments during the study period. The exclusion criteria were: (1) children with ASC
15	severity level 3 (requiring very substantial support) according to DSM-5 criteria. These
16	children may face challenges in maintaining attention and cooperation during the treatment,
17	potentially introducing variability that could affect the study's findings and compromise both
18	the safety and effectiveness of tDCS; (2) a history of head injury, arteriovenous
19	malformation, brain surgery, encephalitis, or meningitis; (3) primary health problems that

1	could limit participation (e.g., concurrent epilepsy; comorbid diagnosis of intellectual
2	disability, other psychiatric or medical conditions); and (4) skin diseases at and near tDCS
3	electrode application sites. Parents or caregivers of all eligible children with ASC had to
4	complete an informed consent form before the experiments. This study was approved by the
5	local institutional review board and conducted in accordance with the Declaration of
6	Helsinki.
7	2.2 Procedures
8	A randomized, double-blind, sham-controlled design with pre-treatment and post-
9	treatment was conducted in this study. All participants were randomly assigned to either the
10	SBT+AtDCS or SBT+StDCS group using a computer-generated randomization sequence in a
11	1:1 ratio. The tDCS setup was performed by an independent experimenter who was unaware
12	of the study hypothesis. A second independent experimenter (a research assistant), also
13	blinded to the stimulation conditions, administered the tDCS treatment. These procedures
14	ensured the integrity of the double-blind design.
15	Before and after interventions, parents or caregivers of children with ASC were asked
16	to complete the Chinese versions of the Autism Treatment Evaluation Checklist (Fang, Ren,
17	Li, & Ke, 2019; Rimland & Edelson, 1999), the Child Behavior Checklist (Achenbach &
18	Edelbrock, 1991; Chen, Huang, & Jao, 2009), and the Sensory Profile (Dunn, 1999) (Figure 1).
19	Each participant also completed an adverse-effects questionnaire, which was verbally

1	administered verbally by the examiner. Simplified language was used, and adjustments were
2	made according to each child's level of understanding to assess their discomfort before and
3	after each tDCS session. The questionnaire used a 10-point Likert scale (with 1 indicating no
4	discomfort and 10 indicating extreme discomfort) to assess the following symptoms:
5	headache, pain, nausea, facial/neck muscle contractions, burning and stinging sensations
6	under the electrodes, uncomfortable feelings, and other sensations and/or adverse effects.
7	Parents or caregivers were also asked to report whether their children had experienced any
8	of these symptoms. If symptoms were severe (rating more than 7 points) and persisted for
9	more than 30 minutes after cessation of stimulation, tDCS treatment would be discontinued
10	(Charvet, Shaw, Bikson, Woods, & Knotkova, 2020).
11	2.3 Intervention protocols
12	All participants were randomized and received one of the two interventions
13	(SBT+AtDCS or SBT+StDCS) for ten sessions [50 minutes/day (initial 20 minutes of tDCS and
14	then 30 minutes of SBT), five days/week for two consecutive weeks]. Each session began
15	with 20 minutes of tDCS delivered concurrently with watching kid-friendly cartoons,
16	followed by 30 minutes of SBT. SBT and tDCS treatments were provided by a senior certified
17	occupational therapist and a research assistant, respectively. Both were responsible for the
18	structure of the treatment during each treatment session. This included determining the
19	types of sensory activities, duration of each sensory task, and recording participants'

1	responses to both tDCS and SBT. These details were reviewed by the principal investigator of
2	this study to ensure standardization of the intervention. Outside the study, interventions and
3	all routine interdisciplinary treatments proceeded as usual. If participants had not received
4	any ASC-related treatments (e.g., mediations or rehabilitative programs) before entering the
5	trial, such treatments were prohibited throughout the study.
6	Transcranial direct current stimulation (tDCS) protocol
7	Each participant received one daily session of tDCS (Neuroconn tDCS stimulator,
8	München, Germany) for ten sessions. Participants sat comfortably during both active and
9	sham stimulation sessions while watching kid-friendly cartoons (Gomez et al., 2017). At the
10	beginning of each session, a pair of rubber electrodes, inserted into 35 cm ² sponges soaked
11	in saline solution, were attached to the heads of children with ASC. In the AtDCS group, the
12	anodal stimulation was applied over the left PFC at the F3 site according to the 10/20
13	international EEG electrode system (Amatachaya et al., 2014; Amatachaya et al., 2015). The
14	cathode was placed on the contralateral upper arm. Anodal tDCS was applied for 20
15	minutes, with the current gradually ramping up to 1 mA over the first 30 seconds and
16	maintained this intensity throughout the session. Stimulation gradually ramped down during
17	the last 30 seconds of the 19th minute.
18	Children with ASC in the sham stimulation group received sham stimulation on the left
19	PFC. A ramp up phase was applied for 30 seconds in the sham condition. This was followed

1 by a one-mA stimulation for 30 seconds and finished with a 30-second ramp down phase.

2	This ensured that the participant experienced the typical sensations on the skin at the
3	beginning of the condition, avoiding awareness of undergoing the sham condition
4	(Amatachaya et al., 2014; Amatachaya et al., 2015). After the initial 2 minutes of stimulation,
5	all participants were asked whether they experienced any discomfort or pain at the
6	electrode sites. If the discomfort persisted, the stimulation was terminated immediately.
7	Sensory-based treatment (SBT) protocol
8	Following each tDCS daily session, all children with ASC received 30 minutes of SBT. The
9	SBT program was based on Ayres' theory of sensory integration (Ayres, 1972), and followed
10	a protocol similar to that described by Schaaf et al. (Schaaf et al., 2014). Before treatment
11	initiation, a senior certified occupational therapist evaluated each child's sensory needs with
12	ASC through clinical observation and the Sensory Profile. Based on these assessments, the
13	same therapist provided tailored sensory-based activities to meet each child's individual
14	needs. The activities incorporated various modalities and exercises targeting different
15	sensory domains. These included toys emitting different light and sound frequencies to
16	enhance visual and auditory experiences, gentle brush strokes along the dorsal surface of
17	the child's forearm, suspended swings (e.g., platform swings, bolster swings, rollers) for
18	vestibular stimulation, finger painting activities for tactile experiences, and wearing a
19	weighted vest while playing tug of war or bouncing on the space hopper for proprioceptive

1	stimulation. The level of challenge was adjusted based on each child's abilities and progress
2	throughout the intervention.
3	2.4 Outcome measures
4	The Autism Treatment Evaluation Checklist (ATEC) is a 77-item diagnostic assessment
5	tool designed to evaluate the effectiveness of autism treatment (Rimland & Edelson, 1999).
6	It is applicable to children aged 5-12 years and is completed by caregivers, providing a total
7	score and scores for four subscales: speech/language/communication; social; sensory and
8	cognitive awareness; and health/physical/behavior. Higher scores indicate greater difficulties
9	in each domain, while lower scores suggest improvements. The Chinese version of ATEC has
10	proven to be a reliable and valid scale (Fang et al., 2019).
11	The Child Behavior Checklist (CBCL) is a component of the Achenbach System of
12	Empirically Based Assessment. The CBCL consists of 113 items to assess child adaptive and
13	maladaptive behaviors in children. These behaviors are categorized into internalizing
14	problems (e.g., anxious or depressed, withdrawn or depressed, and somatic complaints),
15	externalizing problems (e.g., rule-breaking and aggressive behaviors), and the DSM-
16	associated scales (e.g., affective problems, attention-deficit/hyperactivity problems, and
17	oppositional defiant problems) (Achenbach & Edelbrock, 1991). Each item is rated on a 3-
18	point scale from 0 (not true) to 2 (very true), with higher scores indicating more significant
19	behavioral problems. The test-retest reliability and criterion validity of the CBCL have been

1 confirmed (Leung et al., 2006).

2	The Sensory Profile (SP) is a widely used assessment tool to evaluate how children aged
3	3 to 10 process sensory information during their daily activities (Dunn, 1999). The SP
4	examines sensory processing patterns across various domains, including auditory, visual,
5	tactile, gustatory, olfactory, proprioceptive, and vestibular processing. Parents or caregivers
6	use a 5-point Likert scale to rate the child's responses to sensory stimuli and activities. Lower
7	scores on the SP indicate greater challenges in sensory processing. The test-retest reliability
8	of the Chinese version of the SP in autism is optimal (Yang, Tseng, Cermak, Lu, & Shieh,
9	2020).
10	2.5 Statistical analysis
11	Given the small sample size, non-parametric statistical tests were used for the analyses.
12	A paired Wilcoxon test was employed to compare pre-treatment and post-treatment raw
13	scores for the ATEC, the CBCL, and the SP within each group. To evaluate between-group
14	differences in change scores, the Mann-Whitney <i>U</i> test was applied. Change scores were
15	calculated as proportional difference: (post-treatment score – pre-treatment score) / pre-
16	treatment score. We also estimated 95% confidence interval (CI) for the difference between
17	medians was estimated using bootstrapping procedures (Davison & Hinkley, 1997).
18	Statistical significance was set at $p < 0.05$ and the effect size (r) was calculated for significant
19	differences, with thresholds for small (< 0.3), medium (0.3–0.5), and large (> 0.5) effects.

1	3.	Res	ul	ts
1	3.	Res	ul	ts

2	To assess the success of blinding, participants and their parents were asked after the
3	final session whether they could determine if they were in the treatment or control group.
4	All responded that they could not, indicating successful blinding. These procedures ensured
5	the integrity of the double-blind design. Six children with ASC received SBT combined with
6	active tDCS. The demographic data and results from the ATEC, the CBCL, and the SP
7	assessments for all study participants are presented in Table 1.
8	In the SBT+AtDCS group, the ATEC total score significantly improved from pre-treatment
9	to post-treatment (95% CI: -19—3.5, Z = -2.207, p = 0.027, effect size r = 0.637) (Figure 2A).
10	Significant improvements were also observed in the ATEC subscales for
11	speech/language/communication (95% CI: 1–9.5, <i>Z</i> = -2.032, <i>p</i> = 0.042, effect size <i>r</i> = 0.587)
12	and health/physical/behavior (95% CI: -14.5–-1.5, Z = -2.214, p = 0.041, effect size r = 0.639).
13	However, no significant improvements were found in the SBT+StDCS group for the ATEC total
14	score or any subscales. Between-group comparison using the Mann–Whitney U test did not
15	reveal significant difference in change scores for the ATEC total scale (95% CI: -0.67–0.13, Z =
16	-1.643, $p = 0.1$, effect size $r = 0.495$). A power analysis estimated that a total of 44
17	participants (n=22 per group) would be required to achieve significant between-group
18	differences. However, significant differences were observed in the change scores for the
19	ATEC health/physical/behavior subscale between groups (95% CI: 4.5–25.5, Z = -2.470, p =

1 0.013, effect size *r* = 0.743).

2	For the CBCL, significant reductions were noted in the SBT+AtDCS group for the total
3	score (95% CI: -26—1.5, Z = -2.201, p = 0.028, effect size r = 0.635) and externalizing
4	problems subscale scores (95% CI: -133, Z = -2.027, p = 0.027, effect size r = 0.637). No
5	significant within-group improvements were observed in the SBT+StDCS group for the CBCL
6	total score or any subscales (Figure 2B). For between-group comparisons, the Mann–
7	Whitney <i>U</i> test did not show significant differences in change scores for the CBCL total scale
8	(95% CI: -0.38–0.41, Z =-1.826, p = 0.068, effect size r = 0.551). A power analysis estimated
9	that a total of 32 participants (n=16 per group) would be required to achieve significant
10	between-group differences. Nevertheless, significant between-group differences were
11	observed in change scores for the CBCL externalizing problems subscale (95% CI: -0.88
12	0.04, $Z = -2.470$, $p = 0.013$, effect size $r = 0.743$).
13	Regardless of the groups, children with ASC showed significant improvements in sensory
14	modulation subscale scores following intervention (SBT+AtDCS: 95% CI: 1–13, Z = -2.201, p =
15	0.028, effect size <i>r</i> = 0.635; SBT+StDCS: 95% CI: 3–15, <i>Z</i> = -2.023, <i>p</i> = 0.043, effect size r =
16	0.639) (Figure 2C). Furthermore, in the SBT+AtDCS group, the SP total score significantly
17	improved from pre-treatment to post-treatment (95% CI: 15–35, <i>Z</i> = -1.992, <i>p</i> = 0.046, effect
18	size <i>r</i> = 0.575) (Figure 2D). However, no significant between-group differences were found in
19	change scores for the SP total scale or any SP subscales (all $p > 0.4$, with small effect sizes

1	ranging from $r = 0.032$ to $r = 0.219$). The estimated sample size required to achieve
2	significant between-group differences in the SP total scale was 1,068 participants in total
3	(n=534 per group).
4	Importantly, parents or caregivers of all eligible children with ASC did not report or
5	notice any adverse events in either the SBT+AtDCS or SBT+StDCS groups (Table S1).
6	4. Discussion
7	This pilot study is the first to examine the combined effects of SBT and tDCS in children
8	with ASC. The findings indicate that all participants demonstrated significant improvements
9	in their ability to regulate and respond to sensory stimuli after treatment, irrespective of
10	whether they received active or sham tDCS. This suggests that the SBT protocol alone is
11	beneficial for enhancing sensory processing in ASC. Furthermore, children with ASC who
12	received SBT+AtDCS intervention showed greater reductions in autism severity and
13	behavioral difficulties compared to those who receive SBT+StDCS. Although the small
14	sample size limits the generalizability of these findings, the results are encouraging and
15	provide valuable insights for future research and larger-scale investigations.
16	A primary finding of the study is the significant reduction in ASC severity and the
17	improvement in externalizing problems such as rule-breaking and aggressive behaviors,
18	following SBT+AtDCS intervention. In contrast, SBT+StDCS intervention did not yield similar
19	effects. These differences in ASC severity and behavioral difficulties may be specifically

1	linked to the active tDCS treatment. Previous research has shown that anodal tDCS applied
2	over the left PFC can enhance behavioral and social outcomes in individuals with ASC
3	(Amatachaya et al., 2014; Amatachaya et al., 2015; Garcia-Gonzalez et al., 2021; Hadoush et
4	al., 2020; Toscano et al., 2019). Notably, the interaction between excitation and inhibition is
5	critical for neural circuitry function in the brain (Sukenik et al., 2021). Emerging evidence
6	suggests that disruptions in the E–I balance, specifically hyperglutamatergic-hypoGABAergic
7	alterations in specific brain areas such as the prefrontal cortex, are linked to the social and
8	behavioral abnormalities of ASC (Robertson & Baron-Cohen, 2017; Rubenstein & Merzenich,
9	2003; Uzunova et al., 2016; Yizhar et al., 2011). Thus, the improvements observed in
10	children with ASC, including reduced ASC severity and fewer behavioral challenges, following
11	SBT combined with active tDCS over the left PFC may be attributed to this E–I mechanism.
12	Given that this study primarily focuses on clinical behavioral efficacy, further investigation is
13	required to support this assumption.
14	Additionally, we observed significant improvements in sensory modulatory behaviors
15	among all children with ASC following interventions of SBT+AtDCS and SBT+StDCS. These
16	findings are consistent with prior evidence indicating that SBT can improve sensory
17	responsiveness in ASC (Kashefimehr et al., 2018; Pfeiffer et al., 2011; Schaaf et al., 2014).
18	Altered sensory modulation has been reported since the earliest descriptions of ASC
19	(Kanner, 1943), with individuals often exhibiting difficulties in regulating their responses to

1	sensory stimuli (Ben-Sasson et al., 2009; Case-Smith et al., 2015; Kern et al., 2007; Tavassoli
2	et al., 2016). SBT emphasizes sensory stimulation and active participation of the child,
3	focusing on providing planned, controlled sensory inputs based on the child's needs to help
4	enhance their ability to self-regulate sensory demands and improve sensory experiences
5	(Case-Smith et al., 2015; Koomar & Bundy, 2002; Parham et al., 2007; Pfeiffer et al., 2011). In
6	this study, we followed these principles and applied individually customized sensory-motor
7	activities at an appropriate level of challenge. The results indicated that all children with ASC
8	responded more effectively to daily sensory experiences. Future research should investigate
9	the significance of this individualization strategy, as it may play a critical role in achieving
10	positive outcomes in sensory modulation.
11	Another notable finding of our study was the significant improvement in the SP total
12	score following SBT+AtDCS interventions, suggesting that the additional benefit of active
13	tDCS on overall sensory processing is highly promising. Atypical sensory processing in ASC
14	has been observed across all age groups and levels of symptom severity, adversely affecting
15	social behaviors and daily functioning (Baum, Stevenson, & Wallace, 2015; Leekam, 2016;
16	Marco, Hinkley, Hill, & Nagarajan, 2011). Green and colleagues conducted a series of studies
17	suggesting that ASC symptoms are associated with an over-attribution of salience to
18	extraneous sensory information, accompanied by insufficient down-regulation in the brain's
19	responses, such as reduced activation of the PFC. This results in excessive attention to

1	sensory inputs, leading to social-communication difficulties (Green et al., 2016; Green et al.,
2	2018). In this study, we used two different yet complementary treatments—SBT to normalize
3	sensory experiences in individuals with ASC, and active tDCS applied to the left PFC to
4	enhance their capacity for processing downregulation. This combined approach
5	demonstrated synergistic effects on the overall sensory functioning in ASC.
6	However, direct comparisons of between-group effects revealed a more substantial
7	effect on the ATEC and CBCL compared to the SP. Power analyses indicated that achieving
8	significant between-group differences in SP change scores would require a larger sample size
9	than that needed for the ABC and CBCL. This finding suggests a potential ceiling effect,
10	where the effectiveness of the SBT protocol alone may have reached its maximum impact on
11	sensory processing, resulting in less significant differences caused by AtDCS. Future research
12	should consider several avenues to address these findings. Firstly, during stimulation should
13	specifically engage the left PFC to maximize efficacy. For instance, anodal tDCS over the left
14	PFC could potentially enhance working memory in individuals with ASC when they are
15	instructed to maintain a calm and quiet state during the stimulation session (Hadoush et al.,
16	2020). Alternatively, applying cathodal tDCS over the left PFC in conjunction with cognitive
17	remediation training could improve information processing speed during executive function
18	tasks in ASC (Chan et al., 2023).

19 There are some limitations worth noting in the current study. Firstly, the sample size

1	was small and included both boys and girls. Practical challenges, such as trial non-
2	completion and poor treatment compliance, limit recruitment to children with mild to
3	moderate ASC. Given the heterogeneous nature of ASC, the variability in our relatively small
4	sample may have influenced for treatment outcomes. Using power analyses, we have
5	estimated the number of participants required to achieve significant results between
6	SBT+AtDCS and SBT+StDCS groups in the ATEC, CBCL, and SP. The small effect size for
7	improvement in the SP may be attributed to a ceiling effect in the sham control group,
8	where a validated SBT was applied to fulfill ethical considerations for clinical populations.
9	When testing a new intervention, it is essential to ensure that participants' rights are not
10	compromised. Even in the control group, participants should not be deprived of access to
11	proven effective treatments (Emanuel, Wendler, & Grady, 2000; Freedman, Glass, & Weijer,
12	1996). Future studies testing various combinations of tDCS intervention with different levels
13	of task engagement, such as an active task related to the dependent variable versus a
14	passive task unrelated to the dependent variable, could form different intervention packages
15	that affect the outcome differently (e.g., in our study, passive viewing of videos unrelated to
16	sensory functions) are warranted.
17	Secondly, regarding the reliability of ASC diagnosis, the conventional approach has
18	involved a combination of a semi-structured clinical interview with parents and individual
19	observations. However, a new DSM-5 ASC severity rating system has emerged and is gaining

1	recognition for its validity and utility in confirming ASC diagnoses (Mazurek, Lu, Macklin, &
2	Handen, 2019). Therefore, despite the preliminary and inconclusive nature of the present
3	findings, they can serve as an initial point for further research emphasizing well-defined
4	sample groups and sufficient statistical power. Thirdly, although SBT and tDCS are widely
5	used in ASC, there remains limited understanding of their impact on network-level brain
6	activity and the underlying mechanisms, especially within the brain's domains of excitation
7	and inhibition related to ASC symptoms. Fourthly, the study only examined immediate
8	effects and did not explore long-term or delayed impacts. Furthermore, uncontrolled
9	variables, such as the type and frequency of treatments administered beyond the study
10	period (as outlined in Table 1), must be considered as potential confounding factors.
11	5. Conclusions
12	In summary, this randomized, double-blind, sham-controlled pilot study suggests that
13	combining SBT with active tDCS over the left PFC shows potential in reducing symptoms and
14	atypical behaviors associated with ASC. These findings provide initial support for the
15	effectiveness of combined therapies in children with ASC. Validation of these results through
16	further research is crucial, particularly for gaining insights into the underlying
17	neurobiological mechanisms.

1 References

2	Achenbach, T. M., & Edelbrock, C. (1991). Child behavior checklist. Burlington (Vt), 7, 371-
3	392.
4	Amatachaya, A., Auvichayapat, N., Patjanasoontorn, N., Suphakunpinyo, C., Ngernyam, N.,
5	Aree-Uea, B., Auvichayapat, P. (2014). Effect of anodal transcranial direct current
6	stimulation on autism: a randomized double-blind crossover trial. Behav Neurol,
7	<i>2014,</i> 173073. doi:10.1155/2014/173073
8	Amatachaya, A., Jensen, M. P., Patjanasoontorn, N., Auvichayapat, N., Suphakunpinyo, C.,
9	Janjarasjitt, S., Auvichayapat, P. (2015). The short-term effects of transcranial
10	direct current stimulation on electroencephalography in children with autism: a
11	randomized crossover controlled trial. Behav Neurol, 2015, 928631.
12	doi:10.1155/2015/928631
13	American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental
14	Disorders (5th ed.). Washington, DC.
15	Aust, S., Brakemeier, E. L., Spies, J., Herrera-Melendez, A. L., Kaiser, T., Fallgatter, A., &
16	Bajbouj, M. (2022). Efficacy of augmentation of cognitive behavioral therapy with
17	transcranial direct current stimulation for depression: a randomized clinical trial.
18	JAMA psychiatry, 79(6), 528-537. doi: 10.1001/jamapsychiatry.2022.0696
19	Ayres, A. J. (1972). Sensory Integration and Learning Disorders. Los Angeles, CA: Western

1 Psychological Services.

2	Baum, S. H., Stevenson, R. A., & Wallace, M. T. (2015). Behavioral, perceptual, and neural
3	alterations in sensory and multisensory function in autism spectrum disorder. Prog
4	Neurobiol, 134, 140-160. doi:10.1016/j.pneurobio.2015.09.007
5	Beltrán, M. I., Dudink, J., de Jong, T. M., Benders, M. J., & van den Hoogen, A. (2022).
6	Sensory-based interventions in the NICU: systematic review of effects on preterm
7	brain development. <i>Pediatric Research, 92</i> (1), 47-60. doi: 10.1038/s41390-021-
8	01718-w
9	Ben-Sasson, A., Hen, L., Fluss, R., Cermak, S. A., Engel-Yeger, B., & Gal, E. (2009). A meta-
10	analysis of sensory modulation symptoms in individuals with autism spectrum
11	disorders. <i>J Autism Dev Disord, 39</i> (1), 1-11. doi:10.1007/s10803-008-0593-3
12	Camarata, S., Miller, L. J., & Wallace, M. T. (2020). Evaluating Sensory Integration/Sensory
13	Processing Treatment: Issues and Analysis. Front Integr Neurosci, 14, 556660.
14	doi:10.3389/fnint.2020.556660
15	Case-Smith, J., Weaver, L. L., & Fristad, M. A. (2015). A systematic review of sensory
16	processing interventions for children with autism spectrum disorders. Autism, 19(2),
17	133-148. doi:10.1177/1362361313517762
18	Chan, M. M., Choi, C. X., Tsoi, T. C., Shea, C. K., Yiu, K. W., & Han, Y. M. (2023). Effects of
19	multisession cathodal transcranial direct current stimulation with cognitive training

1	on sociocognitive functioning and brain dynamics in autism: A double-blind, sham-								
2	controlled, randomized EEG study. <i>Brain stimulation, 16</i> (6), 1604-1616. doi:								
3	10.1016/j.brs.2023.10.012.								
4	Charvet, L. E., Shaw, M. T., Bikson, M., Woods, A. J., & Knotkova, H. (2020). Supervised								
5	transcranial direct current stimulation (tDCS) at home: A guide for clinical research								
6	and practice. Brain Stimul, 13(3), 686-693. doi:10.1016/j.brs.2020.02.011								
7	Chen, Y., C., Huang, H. L., & Jao, J. C. (2009). Achenbach System of Empirically Based								
8	Assessment. Taipei: Psychological Publishing.								
9	Davison, A. C., & Hinkley, D. V. (1997). <i>Bootstrap Methods and Their Application</i> , Cambridge								
10	University Press, Cambridge.								
11	Delli, C. K. S., Polychronopoulou, S. A., Kolaitis, G. A., & Antoniou, A. G. (2018). Review of								
12	interventions for the management of anxiety symptoms in children with ASD.								
13	Neurosci Biobehav Rev, 95, 449-463. doi:10.1016/j.neubiorev.2018.10.023								
14	Dunn, W. (1999). Sensory Profile. San Antonio, TX: Psychological Corporation.								
15	Fang, H., Ren, Y., Li, C., & Ke, X. (2019). Reliability and validity of the Chinese version of								
16	autism treatment evaluation checklist. Sichuan Ment Health, 32, 518-522.								
17	Finisguerra, A., Borgatti, R., & Urgesi, C. (2019). Non-invasive Brain Stimulation for the								
18	Rehabilitation of Children and Adolescents With Neurodevelopmental Disorders: A								
19	Systematic Review. Front Psychol, 10, 135. doi:10.3389/fpsyg.2019.00135								

1	Freedman, B., Glass, K. C., & Weijer, C. (1996). Placebo orthodoxy in clinical research II:
2	ethical, legal, and regulatory myths. <i>Journal of Law, Medicine & Ethics, 24</i> (3), 252-
3	259. doi: 10.1111/j.1748-720x.1996.tb01860.x
4	Garcia-Gonzalez, S., Lugo-Marin, J., Setien-Ramos, I., Gisbert-Gustemps, L., Arteaga-
5	Henriquez, G., Diez-Villoria, E., & Ramos-Quiroga, J. A. (2021). Transcranial direct
6	current stimulation in Autism Spectrum Disorder: A systematic review and meta-
7	analysis. Eur Neuropsychopharmacol, 48, 89-109.
8	doi:10.1016/j.euroneuro.2021.02.017
9	Gomez, L., Vidal, B., Maragoto, C., Morales, L. M., Berrillo, S., Vera Cuesta, H., Robinson,
10	M. (2017). Non-Invasive Brain Stimulation for Children with Autism Spectrum
11	Disorders: A Short-Term Outcome Study. Behav Sci (Basel), 7(3).
12	doi:10.3390/bs7030063
13	Green, S. A., Hernandez, L., Bookheimer, S. Y., & Dapretto, M. (2016). Salience Network
14	Connectivity in Autism Is Related to Brain and Behavioral Markers of Sensory
15	Overresponsivity. J Am Acad Child Adolesc Psychiatry, 55(7), 618-626 e611.
16	doi:10.1016/j.jaac.2016.04.013
17	Green, S. A., Hernandez, L. M., Bowman, H. C., Bookheimer, S. Y., & Dapretto, M. (2018).
18	Sensory over-responsivity and social cognition in ASD: Effects of aversive sensory
19	stimuli and attentional modulation on neural responses to social cues. Dev Cogn

1 Neurosci, 29, 127-139. doi:10.1016/j.dcn.2017.02.005 2 Hadoush, H., Nazzal, M., Almasri, N. A., Khalil, H., & Alafeef, M. (2020). Therapeutic Effects of 3 Bilateral Anodal Transcranial Direct Current Stimulation on Prefrontal and Motor 4 Cortical Areas in Children with Autism Spectrum Disorders: A Pilot Study. Autism Res, 5 13(5), 828-836. doi:10.1002/aur.2290 Jackson, M. P., Rahman, A., Lafon, B., Kronberg, G., Ling, D., Parra, L. C., & Bikson, M. (2016). 6 7 Animal models of transcranial direct current stimulation: methods and mechanisms. Clinical Neurophysiology, 127(11), 3425-3454. doi: 10.1016/j.clinph.2016.08.016 8 9 Just, M. A., Keller, T. A., Malave, V. L., Kana, R. K., & Varma, S. (2012). Autism as a neural 10 systems disorder: a theory of frontal-posterior underconnectivity. Neurosci Biobehav *Rev, 36*(4), 1292-1313. doi:10.1016/j.neubiorev.2012.02.007 11 Kanner, L. (1943). Autistic disturbances of affective contact. Nervous child, 2(3), 217-250. 12 13 Kashefimehr, B., Kayihan, H., & Huri, M. (2018). The Effect of Sensory Integration Therapy on 14 Occupational Performance in Children With Autism. OTJR (Thorofare N J), 38(2), 75-83. doi:10.1177/1539449217743456 15 16 Kern, J. K., Garver, C., Carmody, T., Andrews, A., Trivedi, J. K., & Mehta, J. A. (2007). 17 Examining sensory modulation in individuals with autism as compared to community controls. Research in Autism Spectrum Disorders, 2(1), 85-94. 18 19 Koomar, J., & Bundy, A. (2002). Creating intervention from theory. In A. C. Bundy, S. J. Lane,

1	& E. A. Murray (Eds.), Sensory Integration Theory and Practice. 2nd ed. (pp. 261-308).
2	Philadelphia, PA: F. A. Davis.
3	Leekam, S. (2016). Social cognitive impairment and autism: what are we trying to explain?
4	Philos Trans R Soc Lond B Biol Sci, 371(1686), 20150082. doi:10.1098/rstb.2015.0082
5	Lefaucheur, J. P., Antal, A., Ayache, S. S., Benninger, D. H., Brunelin, J., Cogiamanian, F.,
6	Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial
7	direct current stimulation (tDCS). Clin Neurophysiol, 128(1), 56-92.
8	doi:10.1016/j.clinph.2016.10.087
9	Leung, P. W., Kwong, S. L., Tang, C. P., Ho, T. P., Hung, S. F., Lee, C. C., Liu, W. S. (2006).
10	Test-retest reliability and criterion validity of the Chinese version of CBCL, TRF, and
11	YSR. J Child Psychol Psychiatry, 47(9), 970-973. doi:10.1111/j.1469-
12	7610.2005.01570.x
13	Marco, E. J., Hinkley, L. B., Hill, S. S., & Nagarajan, S. S. (2011). Sensory processing in autism:
14	a review of neurophysiologic findings. <i>Pediatr Res, 69</i> (5 Pt 2), 48R-54R.
15	doi:10.1203/PDR.0b013e3182130c54
16	May-Benson, T. A., & Koomar, J. A. (2010). Systematic review of the research evidence
17	examining the effectiveness of interventions using a sensory integrative approach for
18	children. Am J Occup Ther, 64(3), 403-414. doi:10.5014/ajot.2010.09071
19	Mazurek, M. O., Lu, F., Macklin, E. A., & Handen, B. L. (2019). Factors associated with DSM-5

1	severity level ratings for autism spectrum disorder. Autism, 23(2), 468-476. doi:
2	10.1177/1362361318755318
3	Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu
4	Rev Neurosci, 24, 167-202. doi:10.1146/annurev.neuro.24.1.167
5	Neel, M. L., Yoder, P., Matusz, P. J., Murray, M. M., Miller, A., Burkhardt, S., & Maitre, N. L.
6	(2019). Randomized controlled trial protocol to improve multisensory neural
7	processing, language and motor outcomes in preterm infants. BMC pediatrics, 19, 1-
8	10. doi: 10.1186/s12887-019-1455-1
9	Nitsche, M. A., & Paulus, W. (2000). Excitability changes induced in the human motor cortex
10	by weak transcranial direct current stimulation. <i>J Physiol, 527 Pt 3</i> (Pt 3), 633-639.
11	doi:10.1111/j.1469-7793.2000.t01-1-00633.x
12	Osorio, A. A. C., & Brunoni, A. R. (2019). Transcranial direct current stimulation in children
13	with autism spectrum disorder: a systematic scoping review. Dev Med Child Neurol,
14	<i>61</i> (3), 298-304. doi:10.1111/dmcn.14104
15	Palm, U., Segmiller, F. M., Epple, A. N., Freisleder, F. J., Koutsouleris, N., Schulte-Korne, G., &
16	Padberg, F. (2016). Transcranial direct current stimulation in children and
17	adolescents: a comprehensive review. J Neural Transm (Vienna), 123(10), 1219-1234
18	doi:10.1007/s00702-016-1572-z
19	Parham, L. D., Cohn, E. S., Spitzer, S., Koomar, J. A., Miller, L. J., Burke, J. P., Summers, C. A

1	(2007). Fidelity in sensory integration intervention research. Am J Occup Ther, 61(2),
2	216-227. doi:10.5014/ajot.61.2.216
3	Pfeiffer, B. A., Koenig, K., Kinnealey, M., Sheppard, M., & Henderson, L. (2011). Effectiveness
4	of sensory integration interventions in children with autism spectrum disorders: a
5	pilot study. Am J Occup Ther, 65(1), 76-85. doi:10.5014/ajot.2011.09205
6	Politte, L. C., Howe, Y., Nowinski, L., Palumbo, M., & McDougle, C. J. (2015). Evidence-based
7	treatments for autism spectrum disorder. Current Treatment Options in Psychiatry,
8	2(1), 38-56.
9	Priori, A., Berardelli, A., Inghilleri, M., Pedace, F., Giovannelli, M., & Manfredi, M. (1998).
10	Electrical stimulation over muscle tendons in humans. Evidence favouring
11	presynaptic inhibition of Ia fibres due to the activation of group III tendon afferents.
12	Brain, 121 (Pt 2), 373-380. doi:10.1093/brain/121.2.373
13	Purpura, G., Cioni, G., & Tinelli, F. (2017). Multisensory-based rehabilitation approach:
14	translational insights from animal models to early intervention. Frontiers in
15	<i>neuroscience, 11,</i> 430. doi: 10.3389/fnins.2017.00430.
16	Rimland, B., & Edelson, M. (1999). Autism Treatment Evaluation Checklist. San Diego, CA:
17	Autism Research Institute.
18	Robertson, C. E., & Baron-Cohen, S. (2017). Sensory perception in autism. Nat Rev Neurosci,
19	<i>18</i> (11), 671-684. doi:10.1038/nrn.2017.112

1	Rotharmel, M., Moulier, V., Vasse, M., Isaac, C., Faerber, M., Bendib, B., Guillin, O. (2019).
2	A Prospective Open-Label Pilot Study of Transcranial Direct Current Stimulation in
3	High-Functioning Autistic Patients with a Dysexecutive Syndrome.
4	Neuropsychobiology, 78(4), 189-199. doi:10.1159/000501025
5	Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: increased ratio of
6	excitation/inhibition in key neural systems. Genes Brain Behav, 2(5), 255-267.
7	doi:10.1034/j.1601-183x.2003.00037.x
8	Schaaf, R. C., Benevides, T., Mailloux, Z., Faller, P., Hunt, J., van Hooydonk, E., Kelly, D.
9	(2014). An intervention for sensory difficulties in children with autism: a randomized
10	trial. J Autism Dev Disord, 44(7), 1493-1506. doi:10.1007/s10803-013-1983-8
11	Schaaf, R. C., Dumont, R. L., Arbesman, M., & May-Benson, T. A. (2018). Efficacy of
12	Occupational Therapy Using Ayres Sensory Integration((R)): A Systematic Review. Am
13	J Occup Ther, 72(1), 7201190010p7201190011-7201190010p7201190010.
14	doi:10.5014/ajot.2018.028431
15	Schneider, H. D., & Hopp, J. P. (2011). The use of the Bilingual Aphasia Test for assessment
16	and transcranial direct current stimulation to modulate language acquisition in
17	minimally verbal children with autism. Clin Linguist Phon, 25(6-7), 640-654.
18	doi:10.3109/02699206.2011.570852

19 Schoen, S. A., Lane, S. J., Mailloux, Z., May-Benson, T., Parham, L. D., Smith Roley, S., &

1	Schaaf, R. C. (2019). A systematic review of ayres sensory integration intervention for
2	children with autism. Autism Res, 12(1), 6-19. doi:10.1002/aur.2046
3	Sousa, B., Martins, J., Castelo-Branco, M., & Goncalves, J. (2022). Transcranial Direct Current
4	Stimulation as an Approach to Mitigate Neurodevelopmental Disorders Affecting
5	Excitation/Inhibition Balance: Focus on Autism Spectrum Disorder, Schizophrenia,
6	and Attention Deficit/Hyperactivity Disorder. J Clin Med, 11(10).
7	doi:10.3390/jcm11102839
8	Sukenik, N., Vinogradov, O., Weinreb, E., Segal, M., Levina, A., & Moses, E. (2021). Neuronal
9	circuits overcome imbalance in excitation and inhibition by adjusting connection
10	numbers. <i>Proc Natl Acad Sci U S A, 118</i> (12). doi:10.1073/pnas.2018459118
11	Tavassoli, T., Bellesheim, K., Siper, P. M., Wang, A. T., Halpern, D., Gorenstein, M.,
12	Buxbaum, J. D. (2016). Measuring Sensory Reactivity in Autism Spectrum Disorder:
13	Application and Simplification of a Clinician-Administered Sensory Observation Scale.
14	J Autism Dev Disord, 46(1), 287-293. doi:10.1007/s10803-015-2578-3
15	Toscano, E., Sanges, V., Riccio, M. P., Bravaccio, C., de Bartolomeis, A., & D'Urso, G. (2019).
16	Fronto-cerebellar tDCS in children with autism spectrum disorder. L'Encéphale, 45,
17	S79-S80.
18	Uzunova, G., Pallanti, S., & Hollander, E. (2016). Excitatory/inhibitory imbalance in autism
19	spectrum disorders: Implications for interventions and therapeutics. World J Biol

1	<i>Psychiatry, 17</i> (3), 174-186. doi:10.3109/15622975.2015.1085597
2	Yang, C. Y., Tseng, M. H., Cermak, S. A., Lu, L., & Shieh, J. Y. (2020). Reliability and Validity of
3	the Chinese Version of the Infant/Toddler Sensory Profile. Am J Occup Ther, 74(2),
4	7402205060p7402205061-7402205060p7402205010. doi:10.5014/ajot.2020.036566
5	Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O'Shea, D. J., Deisseroth,
6	K. (2011). Neocortical excitation/inhibition balance in information processing and
7	social dysfunction. Nature, 477(7363), 171-178. doi:10.1038/nature1036

Figure Legends

Figure 1. Illustration of the study procedures.

Figure 2. Differences between pre-treatment and post-treatment raw scores on (A) the ATEC-

Chinese, (B) the CBCL-Chinese, and (C and D) the SP-Chinese for each intervention group.

Subject					Before treatment			After treatment			Current
ID	Age	Gender	Intervention	Autism severity	ATEC	CBCL	SP	ATEC	CBCL	SP	treatment
1	6	Воу	SBT+AtDCS	Level I	43	19	530	38	13	521	OT, PT, ST
2	7	Girl	SBT+StDCS	Level I	41	94	326	35	92	355	ОТ
3	5	Воу	SBT+StDCS	Level II	74	53	394	50	45	421	OT, PT, ST
4	5	Воу	SBT+AtDCS	Level II	98	76	426	80	62	453	OT, PT, ST
5	5	Girl	SBT+AtDCS	Level I	39	37	500	21	15	528	OT, PT, ST
6	7	Воу	SBT+AtDCS	Level I	62	69	397	42	32	499	OT, PT, ST
7	5	Воу	SBT+StDCS	Level I	58	37	370	57	22	390	OT, PT, ST
8	7	Girl	SBT+StDCS	Level II	58	41	368	84	75	341	OT, ST
9	6	Воу	SBT+AtDCS	Level II	88	90	321	72	83	340	OT, PT
10	5	Воу	SBT+StDCS	Level I	18	19	525	23	19	503	OT, PT, ST
11	6	Girl	SBT+AtDCS	Level I	10	43	497	8	34	518	OT, PT

Table 1. Demographic characteristics, clinical outcome scores, and treatment history of study participants

SBT+AtDCS, sensory-based treatment combined with active tDCS; SBT+StDCS, sensory-based treatment combined with sham tDCS; ATEC, the Autism Treatment Evaluation Checklist; CBCL, the Child Behavior Checklist; SP, the Sensory Profile; OT, occupational therapy; PT, physical therapy; ST, speech therapy